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RELAXATION OSCILLATIONS DURING GAS COMBUSTION IN FURNACES
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The author examines two models of nonacoustic relaxation oscillations during vibratory combustion of a
gas; these correspond to the two extreme cases of furnace systems G = idem and p I idem.

It is known [1] that excitation of oscillations in combustion systems is connected with perturbations of the heat sup-
Ply and perturbations of the burning rate. Both these and other perturbations are connected, in their turn, with oscilla-
tions of the flow velocity and pressure. Two extreme cases are possible: 1) perturbations of the heat supply (or burning
rate) related to oscillations of the flow velocity of the gas-air mixture, the mass flow over all sections of the system be-
ing the same at all times (G = idem); 2) perturbations of the heat supply (or burning rate) related to pressure oscillations
in the furnace, the pressure being the same, at all times and at all points in the furnace (pf= idem).

It is then expedient to examine systems of type G = idem and pf = idem as convenient theoretical models. In addi-
tion, in this paper we shall examine only oscillations associated with perturbations in the heat supply.

As a system of type G = idem let us examine a furnace with an injection gas burner equipped with a nozzle in the
form of a plate combustion stabilizer.

The basic equation for joint operation of burner and furnace in the transient regime, allowing for the inertia head
of the injector, may be written in the form
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In deriving (1) it was assumed that the flow rate of mixture in the system is the same at each instant of time, while
the flow rate of gas is constant in time. Moreover, we shall henceforth consider, for simplicity, that the underpressure in
the furnace is constant (Ach = const).

The heads Ap% and Apg are functions of the injection coefficient [2]:
ApE:R—S'z——Tzz, @
Apy=DIEZ (1 +E)z-+1]. )

A plate stabilizer nozzle is a system of plates connected by rods, each of which acts as a stabilizer in the form of
a poorly streamlined body. The flame is confined to the turbulent wake of the rods.

The bundle of plates prevents the flame jumping inside the burner.

Tests show that, at small mixture velocities, the flame "sits® on the entire stabilizer—rods and plates. At in-
creased velocities the flame gradually separates from the plates, and is finally confined to the rods alone. With further
increase in mixture velocity the flame separates first from the extreme rods, and then from rods located closer to the
center, until it is completely detached. Thus several sharply defined stages of separation may be observed, the pattern
described being observed at various values of the injection coefficient (and hence of the air-fuel ratio). When the mix-
wure velocity is reduced, stages of "reattachment” develop in reverse order. In this context two very important circum-~
stances should be noted, which allow a model of the relaxation oscillations to be constructed for the case examined:
transition to each successive stage of separation of the flame is accompanied by a downward pressure jump ahead of the
stabilizer (I.e., in the head App), just as the reverse transition is accompanied by an upward pressure jump; the bound-
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aries of the stages of separation and of the corresponding stages of "reattachment” of the flame have various locations
depending on the injection coefficient and the gas-air mixture velocity (Fig. 1).

W, The first may be explained by variation of the thermal resis-
tance of the flame, which is part of the resistance of the nozzle.
Due to the fact that there is a sharp increase in temperature at the
flame front, the flame possesses thermal resistance, which falls with
increase in the degree of separation from the stabilizer, This resis-
tance is commensurable with that of the "cold” nozzle (stabilizer).

l
|
P The second is evidently connected with the laws of flame sta-
! ) bilization behind poorly streamlined bodies. If, following Vulis [3],
[, - we treat the conditions of flame stability and instability as condi-
L2 g tions of ignition and quenching near the recir-clizioa zone behind

_

Fig. 1. Boundaries of the stages of separa- the stabilizer, the noncoincidence of the flame separation and "re-
tion (2) and "reattachment” (3), and deter- attachment” boundaries may be explained by the well-known non-
mination of points of separation and "reat- coincidence of the quenching and ignition points. This lack of coin-
tachment” (1 —wy, = (m/r) wg(l + z)). cidence for the flame separation and "reattachment” boundaries

(hysteresis) is due to static bistability of the system in the interval
between these boundaries.

We shall assume that separation and "reattachment” correspond to constant values Ay and A, of the hydraulic resis
tance coefficient, where Ay < A,. This gives us the following equations for the nozzle:

Apy==D, [E22 -~ (1 = E) 2 -+1), 4
Apa==Dy[E2 + (1 +E)z-t-1], )
Here D, ~ A, Dy~ A,, and D, < D,.
ap* *
0 L
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Fig. 2. a) Characteristics of injector (1 —Apf = f(z)) and nozzle (2 —
—Aph = f(2)) for A= Ap; 3 —Apf = f (2) for A = Ay, and b) diagram
of self-oscillation of the system G = idem.

The characteristics of the injector, according to (2), and of the nozzle, according to (4) and (5), are shown graph-
ically in Fig. 2a.

We introduce the new variable

X‘:Z——ZO,

(6)

where 2z, is the injection coefficient corresponding to the point of intersection of the injector characteristic (2) and the
nozzle characteristic (5). Using (6), we transform (2), (4), and (5) and substitute in the original equation (1).

Omitting the simple intermediate steps, we have: if the flame is separated from the stabilizer,
¥ = g —— . 2
X =a—2b x—c;x2, 0

if the flame is "sitting” on the stabilizer,

%= —2byx — cy a2, ®)
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where
a=(Dy— D) [EZ (1 +E) 2y + 11U,
20, =[S - 22, (T -+ D{£) -+ Dy (1 - E)) U,
26, = [S -+ 22 (T -+ D,E) + D, (1 + E) U, ©)
co = (T -+ DWEYU, ¢y = (T - D,E) U1,

After separating the variables and integrating, we can write the solution of (7) as

S
1 Vac, + b —b,—
T e In 2~ [l =1 1 const. (10)
9Vac, =07 Vae, + 05+ b+crx
The solution of (8), obtained similarly, may be written as
I x
— —In——— =1t const.

2b,  Cox - 25y . ab

Equation (10) gives a function for x that grows exponentially with time, and (11) a decreasing one. To obtain x
as a continnous function of time t, the solutions of (10) and (11) must be "joined." This may be done as follows.

From the theory of injectors it is known that the connection between mixture velocity and injection coefficient
[27 is

W, = mwg(l + 2)/r, (12)
where m = Fj/Fyp; 1= Fg/Feh.

For constant burner geometry (In = const, 1 = const) and given gas velocity (wg = const), in the wy,, z plane, Eq.
(12) is represented by a straight line, along which these burner parameters vary. This curve may intersect the known
curves of flame separation and "reattachment.” Our interest here is in the points of intersection lying to the left of the
maxima, and corresponding to values of the injection coefficient equal to z' and z" (Fig. 1). Let these values lie in
the range z; —z,. Then the parts of the exponentials described by (10) and (11) must lie in the interval z" —z' (or,
which is the same thing, in the interval x" —x'), i.e., the exponentials must intersect at the points corresponding to
x=x'and x = x".

In this way we obtain an oscillogram of the oscillating relaxation process. Each oscillation cycle consists of two
stages, Determining the duration of the first stage from (10) and the duration of the second from (11), it is easy to find
the period of cscillation as

I Vaatb—b—e)Vac+ b +b+ax) |

2 Vacl -+ E (Vac,1 b — by — ") (Vaq + bk by )
b L e 26)
© 20y X (cox”+ 2by) (13)

0sC

Figure 2b shows a diagram of the oscillatory process, which we can now describe in the following terms. For some
small value of the injection coefficient the flame is separated (fully or partially) from the stabilizer, the injector pres-
sure being greater than the resistance of the stabilizer and flame. Therefore the injection coefficient increases, and the
increase continues until at some value of the injection coefficient z = z", the flame "reattaches™ itself to the stabilizer®.
Then the nozzle operating point jumps from one characteristic to the other, which corresponds to higher resistance., The
injector pressure is now less than the resistance of the stabilizer and flame, so that the injection coefficient begins to
fall, At some small value z = z' flame separation sets in, resulting in a downward jump in nozzle resistance. The oper-
ating point again lies on the less steep characteristic, and the process is repeated.

High-speed motion-picture photography of the process shows that low-frequency vibratory burning involves period-
ic flame separation.

Under what conditions is self-oscillation impossible ?

From the formal point of view, these conditions may be found by putting Tosc = . It follows from (13) that then
at least one of the following conditions must be satisfied:

* "Reattachment” of the separated flame may occur at any degree of separation (partial or full) and is impossible
only when the flame collapses.
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Va(,'l + b-[g — bl — Clxl,—'_- 0

or
x'= 0.
The first condition leads to the requirement z" = z,, and the second gives z' = zg.

Thus self-oscillation is impossible when

’

7z, P22

Physically. this means that the system must be able to realize equilibrium conditions corresponding to 2z, or z;. In
other words, the range of operating conditions of the burner should lie (at least, in part) within the bistable zone or the
hysteresis region. This can be done by a suitable choice of the design and operating parameters of the system.

Tests show that when the construction of the stabilizer is changed the boundary curves may be displaced upwards,
increasing the region of stable operation of the burner. When the injector parameters are varied (for example, the pa-
rameter k = Fg/F,p), the boundary curves of separation and “"reattachment" are displaced, the straight line wpy = f(2)
cannot intersect both curves at once to the left of the maximum, and hence oscillations become impossible. (It is easily
shown that intersection of the two curves to the right of the maximum does not give oscillations.)

Let us examine a system of the type pf= idem as an example of a furnace with a mixing burner (a burner with a
forced supply of gas and air).

The basic equation for this case is the heat balance equation in the transient regime

dQidt — q, — q,, (14)
where
Q = Cl':)[ Gj’: TJty 41 — Gg (Qﬂ ElYg :_ Cpg TO) - Gacpa TO’

We shall consider, for simplicity, that combustion occurs instantaneously at the burner outlet, and that the thermo-
dynamic state of the combustion products at each instant of time is identical over the whole volume of the furnace. Then
the equation of state for the furnace gases is written in the form

.

PpVy = Oy ReTy- (1s)
Further, we shall write the mass flow characteristics of the burner (gas and air) and of the flue:
Ga= pal'a V2 Vo (Pa— P, (16)
Gy v PV 28 (Pf — ).
We assume that

c T - Tf, Yﬂ == Yf = ch/RJc Tf :Pro/Rfo- an

P Cpyp

The completeness of combustion § and the temperature T in the furnace depend appreciably on the burning condi-~
tions. It is evident that when the pressure in the furnace increases, the pressure drops in the burner fall (in the general
case, by different amounts), while the pressure drop between the furnace and the flue increases. This causes an excess
of heat removal over heat supply, and, if the pressure excess in the furnace is large enough, it may lead to quenching
of the flame. Conversely, a decrease of pressure in the furnace causes an excess of heat supplied over heat removed.
When the excess pressure in the furnace is small enough (in particular, when there is an underpressure), and when there
is a hot source (a glowing hot furnace lining or hot combustion products that have not been exhausted), ignition of the
mixture occurs.

As before, we note two factors which determine the possibility of constructing models of the relaxation oscilla-
tions for the given case: ignition and quenching are accompanied by discontinuous changes in the temperature in the
furnace and in the completeness of combustion, and occur at various values of the furnace pressure.

The first is obvious. The second follows from the fact that the ignition and quenching points do not coincide.
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Let the temperatures in the furnace after ignition and quenching be, respectively, Ty and Ty, and the coefficients
of completeness of combustion &, and & = 0.

g ; Then we obtain the following expressions for qy, d,

— J ‘ and Gfp:
>

v

when E=F% ¢ = Gg (%—1 g+ CpgT0> + GacpaTU ;
g

92 = Gﬂcpf Ty, + chSJc (Tg, —Tb),

Gp= vl vV 2gvi, (ch““ P

when §=8 =0 ¢ = chpgTO + Gac,,a Ty, (19)

q2 = Gﬂ_cpf sz _‘f‘ kf SJC (chz - TO)9

Gey= g Fn V 2271 (P~ -

d when TchTf‘ { (18

AN/

Pa p 1 pf Pt P§ Pt
Fig. 3. Characteristics of heat supply and removal,
and diagram of self-oscillations of the system pf =

= idem: 1 and 2) q for T = Tf, and for Tf= T
3 and 4) qp for Ty = T, and for T = Tf,.

when Ty=Tf, { 20)

Figure 3 presents curves of variation of heat input and
output as functions of the pressure in the furnace according
1o (20), (21), (23). (24) with account for (16), (17), (22),
and (25).

We introduce the new variable

y= pf_ pﬂs @1
where pfy is the absolute pressure in the flue downstream of the damper, which for simplicity we shall consider constant.

In addition, we designate

Pg— Pg =@, Pg— Py="0. @2

Using (21) and (22), we transform (16) and substitute it in the expressions for q; and gg and also into the original
equation (14). Using (15) and (17), after intermediate steps, we obtain: when there is combustion

y=KiVa—y+LVb—y—MVy—Ni, (23)
when there is no combustion
y=KVa—yg+L Vb—yg—MVy—N;, (23)
(cont’'d)
where
QrE/vg+ cogTo .

Ki=ugFgV2gvgRg

Cvaf ’
Ks = pgFy V28 Vg Ryc, g To/evsVy;
L'=uFa V28 VaRsc, Toltys Vs

M, = PﬂFﬂ VW%I,/CVJCVJC ;

My =poFoV 22 ps, Ry, o fergVy

In (23) the variables are separated, but integration presents great computing difficulties. The problem may be sim-
plified by expanding Va— y and } b — y by Newton's binomial theorem and restricting attention (to no special
detriment) to the linear terms

}/a«—yvzl/z——yﬂﬂ, Vo—y=Vb—uy2Vb.

Then instead of (23) we may write

(237

y: Ll—Mll/?——le,
Y=L—MVy—Nyy, @)
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where

=K Va L' VE—N; L= KVa+ L Vb—Na;

N, - _’(Li__ L ) v L(L _-,Lﬁ_). )
' Va Vol P 2 \Wa Vb

After separation of the variables and integration, the solution of (24) takes the general form
1 _

M M VAN PE NV

— Mol Nk 2 = ¢ -L const, (26)
NVYALN+M2 M —V 4LN +M? - 2N V' y

For values of the coefficients of (24) and (25) with subscript 1, (26) gives a function for y that increases with time,
and for subscript 2 a decreasing one. "Joining™ of the solutions to obtain y as a continuous function of t is done in the
same way as before.

From (16) and the relation
a4 = Gg 'Ya/GaYgLO ,

it is not difficult to obtain the excess pressure in the furnace (over that in the flue) and a:

(Pg— pr) @*/k* — (pg — D)

pf Pa—~ 2k | ’ 27
where
1 p, Fy
k- e a 8 .
Lo g g Ya

For fixed burner geometry (k = const) and given pressure conditions (pf = const, pg = const, pf; = const, (27)de-
scribes a curve in the plane of parameters (pf — pf ) along which these parameters vary. This curve may intersect cer-
tain curves of ignition and quenching. Let the points of intersection correspond to the values y' and y". If these values
lie in the interval y; —y,, then segments of the exponentials described by (26) must lie in the interval y" —y', or, which
is the same thing, the exponentials will intersect at points corresponding to y = y* and y = y". As before, each cycle con-

sists of two stages (Fig. 3). We can at once write the expression for the period of oscillation:
In H M+ VLN, =M 42N, VY )
N ( ' Vm L 9N, 1/7) -
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. s __——2 ><
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__V4L N+ M2 oN VT ]
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+
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(28)

The oscillatory process is as follows. At some small value of the pressure in the furnace, due to the large differ-
ence between the gas and air pressures, on the one hand, and the furnace pressure, on the other, gas and air enter the
furnace in sufficient quantity and in the required ratio for burning. Since the flow rate out of the furnace is small (the
difference in pressure between furnace and flue is small), and the heat supply is greater than the heat loss, the pressure
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in the furnace increases. The increase continues until the flame is quenched at some pressure p7 in the furnace, owing
either to reduction of the gas supply or to a change in o making burning impossible. Then a sharp fall in temperature
occurs in the furnace, and a transition to new curves of heat supply and removal giving increased heat supply, which
leads to a drop in furnace pressure. At some small value of the pressure p'f ignition occurs due to the change in gas flow
rate and o, and the process repeats itself.

The conditions for which self-oscillation are impossible, as in the previous case, are determined from Togc = .
According to (28), this means

Ly —MVy — Ny =0; Ly— M,y —Nyy'=0.

The first condition is none other than an approximate form of the exact heat balance equation for combustion [cf.
(26) and (23)]:

Kiyae—y +LvVb—y—My § —N; =0,

which is possible only when y* = y;, i.e., when P"f = pf,- An analogous analysis of the second condition gives P'f = Pf,:

Therefore, self-oscillation is impossible when

"

< Phs pJ'c>/ Phi-

As in the previous case, these conditions mean that at least part of the range of furnace operating conditions should
lie within the bistable zone, which can be ensured by an appropriate choice of design and operating parameters.

NOTATION

G-mass flow rate; Q—volume flow rate; y~specific weight; z—volume injection coefficient; Apf, Apj—dimen-
sionless pressure head created by injector and operating in nozzle (from the static characteristic), respectively; Ap*f—-
dimensionless underpressure in furnace; R, §8', T—known coefficients, functions of injector geometry, hydraulic resis-
tance along injector channel, and the parameter E = p,/ pgi D—a coefficient, a function of the injector geometry and
the hydraulic resistance of the nozzle (it depends appreciably on the burning conditions); p—density; T~—temperature;
p—pressure; w—velocity; cp—specific heat at constant pressure; cy—specific heat at constant volume; G'—mass change;
V--volume; R~gas constant; o.—fuel~air ratio; £~coefficient of completeness of combustion; k—heat transfer coeffi-
cient; Q? —lower heat of combustion of gas; Ly-—volume of air required for complete combustion of 1 m® of gas at NTP;
p-mass flow rate coefficient; S—heat transfer surface; F—{flow section area; Q, q;, and qy—amount of heat in cne fur-
nace charge, introduced by gas and air and removed from furnace by heated combustion products and by heat removal,
respectively; pfj—absolute pressure in flue downstream of damper. Subscripts: g—gas; a—air; fl—flue; f—furnace;
j—iet; th—throat; d—diffuser; m-mixture; O-under initial conditions.
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