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The author examines two models of nonacoustic relaxation oscillations during vibratory combustion of a 
gas; these correspond to the two extreme cases of furnace systems G = idem and pf  = idem. 

k is known [1] that excitation of oscillations in combustion systems is connected with perturbations of the heat  sup- 
ply and perturbations of the burning rate. Both these and other perturbations are connected, in their turn, with oscilla- 
tions of the flow velocity and pressure. Two extreme cases are possible: 1) perturbations of the heat supply (or burning 
rate) related to oscillations of the flow velocity of the gas-air mixture, the mass flow over all sections of the system be-  
ing the same at all times (O = idem); 2) perturbations of the heat supply (or burning rate) related to pressure oscillations 
in the furnace, the pressure being the same, at all times and at all points in the furnace (pf  = idem). 

It is then expedient to examine systems of type G = idem and pf  = idem as convenient theoretical models. In addi- 
tion, in this paper we shall examine only oscillations associated with perturbations in the heat supply. 

As a system of type G = idem let us examine a furnace with an injection gas burner equipped with a nozzle in the 
form of a plate combustion stabilizer. 

The basic equation for joint operation of burner and furnace in the transient regime, allowing for the inertia head 
of the injector, may be written in the form 

cJ = A p i - -  a + a PS, 
d! 

where 
L 

pg Wg 0 

2 A P n  g 2 A p f  �9 2 A p i  . A p n =  �9 A p  = - - "  A Pi - -  2 , 2 , 2 , 
9g Wg pgWg 9gWg 

APi  = P i - - P o ;  A P n =  P n - -  Pf; A py = po - -  p f  . 

In deriving (1) it was assumed that the flow rate of mixture in the system is the same at each instant of time, while 
the flow rate of gas is constant in t ime, Moreover, we shall henceforth consider, for simplicity, that the underpressure in 

the furnace is constant (Apf = corot). 

The heads Ap~[ and Ap~ are functions of the injection coefficient [2]: 

A p i  = R - -  S '  z - -  T z  ~, (2) 

A Pn = D [Ez 2 q- ( 1 + E) z q- 1 ]. (3) 

A plate stabilizer nozzle is a system of plates connected by rods, each of which acts as a stabilizer in the form of 

a poorly streamlined body, The f lame is confined to the turbulent wake of the rods. 

The bundle of plates prevents the f lame jumping inside the burner. 

Tests show that, at small mixture velocities, the f lame "sits" on the entire s tabi l izer-rods and plates. At in- 
creased velocities the f lame gradually separates from the plates, and is finally confined to the rods alone. With further 
increase in mixture velocity the f lame separates first from the extreme rods, and then from rods located closer to the 
center, until it is completely detached. Thus several sharply defined stages of separation may be observed, the pattern 
described being observed at various values of the injection coefficient (and hence of the air-fuel ratio). When the mix-  
ture velocity is reduced, stages of "reattachment" develop in reverse order. In this context two very important c i rcum- 
stances should be noted, which allow a model of the relaxation oscillations to be constructed for the case examined: 
transition to each successive stage of separation of the f lame is accompanied by a downward pressure jump ahead of the 
stabilizer (i. e . ,  in the head Apn), just as the reverse transition is accompanied by an upward pressure jump; the bound- 
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aries of the stages of separation and of the corresponding stages of "reattachrnent" of the f lame have various locations 
depending on the injection coefficient and the gas-air mixture velocity (Fig. 1). 
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Fig. 1. Boundaries of the stages of separa- 
tion (2) and "reattachment" (3), and deter- 
ruination of points of separation and "reat- 
tachment" (1 - w  m = (m]r)Wg(1 + z)). 

The first may be explained by variation of the thermal resis- 
tance of the flame, which is part of the resistance of the nozzle. 
Due to the fact that there is a sharp increase in temperature at the 
f lame front, the flame possesses thermal resistance, which falls with 
increase in the degree of separation from the stabilizer. This resis- 
tance is commensurable with that of the "cold" nozzle (stabilizer). 

The second is evidently connected with the laws of flame sta- 
bilization behind poorly streamlined bodies. If, following Vulis [S], 
we treat the conditions of f lame stability and instability as condi- 
tions of ignition and quenching near the recir,':e~ l:ioe zone behind 
the stabilizer, the noncoincidenee of the f lame separation and "re- 
attachment" boundaries may be explained by the well-known non- 
eoincidenee of the quenching and ignition points. This lack of coin- 
cidence for the flame separation and "reattachment" boundaries 
(hysteresis) is due to static bistabflity of the system in the interval 
between these boundaries. 

We shall assume that separation and "reattachment" correspond to constant values A I and A s of the hydraulic resis 
tanee coefficient, where A l �9 A~. This gives us the following equations for the nozzle: 

A p n -  Dl [Ez '~ -~- (1 "- E) z ~11, (4) 

APn=:  Dz [Ez z + (1 - - E )  z-i-11. (5) 

Here D x ~ A l ,  D z ~ A 2 ,  and D I < D  e . 
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Fig. 2. a) Characteristics of injector (1 - A p ~  = f(z)) and nozzle (2 - 
- A p ~  = f(z)) for A = As; 3 --Ap~ = f (z) for A = A 1, and b) diagram 

of self-osciIlation of the system G = idem. 

The characteristics of the injector, according to (2), and of the nozzle, according to (4) and (5), are shown graph- 
ieally in Fig. 2a. 

We introduce the new variable 

X ~ Z - - Z o ,  
(6) 

where z 0 is the injection coefficient corresponding to the point of intersection of the injector characteristic (2) and the 
nozzle characteristic (5). Using (6), we transform (2), (4), and (5) and substitute in the original equation (1). 

Omitting the simple intermediate steps, we have: if the flame is separated from the stabilizer, 

x = a - -  2b a x - -  ca x 2, (7) 

if the f lame is "sitting" on the stabilizer, 

x ~- - - 2 b ~ x - -  cox 2, (8) 
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where 

a ---- ( D . - - D x ) [ E z o  -~- (1 + E )  z0 -? 1] U -1, 

2b~ -- [S -" 2zo (T -+- DxE ) -[- Dx (1 @ E)] U-' ,  
2b2 = IS + 2Zo (T + D2E) + D~ (1 + E)] U -x, 

c2 --- (T  -~- DxE) U -x ,  c2 = (T + D2E) U -x  

(9) 

After separating the variables and integrating, we can write the solution of (7) as 
} / - -  

__ I In = a c l  + b 2 - -  bx - -  cxx _ t + c o n s t .  (10) 

The solution of (8), obtained similarly, may be written as 

! x 
In = t + c o n s t .  

2b.. c2x @ 2b2 (11) 

Equation (10) gives a function for x that grows exponentially with time, and (11) a decreasing one. To obtain x 
as a continuous function of t ime t, the solutions of (10) and (11) must be "joined." This may be done as follows. 

From the theory of injectors it is known that the connection between mixture veloci ty and injection coefficient 
[2] is 

w m = mWg(1 + z)/r, (12) 

where m = Fj /Fth;  r = Fd/Fth.  

For constant burner geometry (m = const, r = const) and given gas velocity (Wg = const), in the Wm, z plane, Eq. 
(12) is represented by a straight line, along which these burner parameters vary. This curve may intersect the known 
curves of flame separation and "reattachment." Our interest here is in the points of intersection lying to the left of the 
maxima,  and corresponding to values of the injection coefficient equal to z '  and z" (Fig. 1). Let these values lie in 
the range z l - z 0 .  Then the parts of the exponentials described by (10) and (11) must lie in the interval z" - z '  (or, 
which is the same thing, in the interval x" - x ' ) ,  i . e . ,  the exponentials must intersect at the points corresponding to 

x = x ' a n d x = x ' .  

In this way we obtain an oscillogram of the oscillating relaxation process. Each oscillation cycle consists of two 
stages. Determining the duration of the first stage from (10) and the duration of the second from (11), it is easy to find 

the period of oscillation as 

1 
T = 

osc 2 V acl + b~ 

(V + + + ClX" ) 
+ + .+ b, + 

+ 1-!-- lu x" (c2x' + 2b~) 

2bz x ' ( c2x'(-t- 262) 

+ 

(13) 

Figure 2b shows a diagram of the oscillatory process, which we can now describe in the following terms. For some 
small value of the injection coefficient the f lame is separated (fuLly or partially) from the stabilizer, the injector pres~ 
sure being greater than the resistance of the stabilizer and flame. Therefore the injection coefficient increases, and the 
increase continues until at some value of the injection coefficient z = z", the f lame "reattaches" itself to the stabilizer*. 
Then the nozzle operating point jumps from one characteristic to the other, which corresponds to higher resistance. The 
injector pressure is now less than the resistance of the stabilizer and flame, so that the injection coefficient begins to 
fall, At some small value z = z '  f lame separation sets in, resulting in a downward jump in nozzle resistance. The oper- 
ating point again lies on the less steep characteristic, and the process is repeated. 

High-speed motion-picture photography of the process shows that low-frequency vibratory burning involves period- 

ic flame separation. 

Under what conditions is self-oscillation impossible ? 

From the formal point of view, these conditions may be found by putting Tos c = ~o. It follows from (13) that then 

at least one of the following conditions must be satisfied: 

* "Reattachment" of the separated flame may occur at any degree of separation (partial or full) and is impossible 

only when the f lame collapses. 
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o r  

I / a c ,  + b~ - -  bt - -  q x " =  0 

X* ~ 0o 

The first condit ion leads to the requirement  z" = z 1, and the second gives z '  = z0. 

Thus se l f -osci l la t ion is impossible when 

z ' - ~  z0, z / '>  zt. 

Physically, this means that the system must be able to rea l ize  equil ibrium conditions corresponding to z 0 or z 1. In 
other words, the range of operating conditions of the burner should l ie  (at least,  in part) within the bistable zone or the 
hysteresis region. This can be done by a suitable choice of the design and operat ing parameters of the system. 

Tests show that when the construction of the s tabi l izer  is changed the boundary curves may  be displaced upwards, 
increasing the region of stable operation of the burner. When the injector  parameters  are varied (for example ,  the pa-  
rameter  k = Fa/Fth) ,  the boundary curves of separation and "reat tachment"  are displaced, the straight l ine  Wm = f(z)  
cannot intersect both curves at once to the left  of the maximum,  and hence oscil lations become impossible.  (It is easily 

shown that intersection of the two curves to the right of the maximum does not give oscil lat ions.  ) 

Let us examine  a system of the type p]  = idem as an example  of a furnace with a mixing burner (a burner with a 

forced supply of gas and air). 

The basic equation for this case is the heat  ba lance  equation in the transient regime 

where 

dQ/dl =, q~ --- q2, (14) 

Q = q' f  G'fTsf; qt = Gg(Q~ ~,/yg-}- C,grO) ' -  G a %  7"0; 

-- a n C , n r n ,  k f s f  ( r / -  to). 

We shall  consider, for s impl ic i ty ,  that  combustion occurs instantaneously at the burner outlet,  and that the thermo-  

dynamic  state of the combustion products at each instant of t ime  is ident ica l  over the whole volume of the furnace. Then 

the equation of state for the furnace gases is written in the form 

(15) 

Further, we shall  write the mass flow characterist ics  of the burner (gas and air) and of the flue: 

ag _-t, gPg g2g Vg 
= z:a F-2g va p/), 

Gfl :=: t fl Ffl l / 2g yfl(pf - -  pfl). 

We assume that  

(16) 

Cpft=-- Cpf, Tf l  =-= Tf, y f l - - - y f  .... p:f/R 5 T f ""  pr (17) 

The completeness of combustion g and the temperature  T f  in the furnace depend appreciably  on the burning condi -  
tions. It is evident  that when the pressure in the furnace increases, the pressure drops in the burner fa l l  (in the general  
case, by different amounts), while the pressure drop between the furnace and the flue increases. This causes an excess 
of heat  removal  over heat  supply, and, if  the pressure excess in the furnace is large enough, i t  may lead to quenching 
of the f lame.  Conversely, a decrease of pressure in the furnace causes an excess of heat  supplied over heat  removed.  
When the excess pressure in the furnace is smal l  enough (in part icular,  when there is an underpressure), and when there 
is a hot source (a glowing hot furnace l ining or hot combustion products that  have not been exhausted), ignit ion of the 

mixture occurs. 

As before, we note two factors which de termine  the possibili ty of constructing models of the re laxat ion osc i l la -  

tions for the given case: ignit ion and quenching are accompanied by discontinuous changes in the temperature  in the 
furnace and in the completeness of combustion, and occur at various values of the furnace pressure. 

The first is obvious. The second follows from the fact that the ignit ion and quenching points do not co inc ide .  
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Let the temperatures in the furnace after ignition and quenching be, 
of completeness of combustion g~ and g~ = 0. 

/ 

/w !d. 

J 
. 

Fig. 3, Characteristics of heat supply and removal, 
and diagram of self-escillations of the system pf = 
= idem: 1 and 2) ql for Ty = Tyl and for T :  = T:~; 

3 and 4) o~ for Tf  = Tf l  and for Tf  = rye,  

respectively, Tf  and T f, and the coefficients 

when 

Then we obtain the following expressions for ql, c~, 
and O:~: 

) 
when T:f=T;f, lq~:OflcP;f r:' + ~Ys:(rI'--T~ (18) 

when ~ -- ~ -- 0 ql = Gg%gTo + GacpaTo, (19) 

when Ty= T b " lq2=GflcP: 
Ty~ -b kySy(TI~-- To), 

/%= ~nFn g ~  (~-- ~). (20) 

Figure 3 presents curves of variation of heat input and 
output as functions of the pressure in the furnace according 
to (20), (21), (23), (24) with account for (16), (17), (22), 
and (25). 

We introduce the new variabie 

= ' f -  'n (21) 
where pf~ is the absolute pressure in the flue downstream of the damper, which for simplicity we shall consider constant. 
In addition, we designate 

p g - -  pfl = a, p a - -  p f l=  b. (22) 

Using (21) and (22), we transform (16) and substitute it in the expressions for ql and o e and also into the original 
equation (14). Using (15) and (17), after intermediate steps, we obtain: when there is combustion 

~/ = K; l / a - -  y + L' ]/b - - y  - -  Mt I / y - -  N;, (23) 

when there is no combustion 

where 

b K;Vh--j+L' Vb-y-M~V-~ N' (28) 
(toni' d) 

/ ( ;  = ~gFg V ~ g R g  Q~l/'Yg--~- cpgTo . 
cvf V~ 

K; = pgFg V2gv--gl~fCpgTo/cv~gf; 
L'= ~,s~ V ~ a R i c ,  To/ov fvf; 

(2s') 

M1 =~ff n V2gpfoafTfi~f/~viv~; 

NI = k: S :(V b -- To) a/o~fVr G = kfS: (Tfo- To) ~/o~f V~. 

In (23) the variables are separated, but integration presents great computing difficulties. The problem may be sim- 
plified by expanding V 'a  ~ y and ],/b - -  y by Newton's binomial theorem and restricting attention (to no special 

detriment) to the linear terms 

V ~ -  y =- V-d-  ~/2 V~, 1 : 6 -  y = V ~ -  y/2 V~. 

Then instead of (28) we may write 
.~ --  L~ - -  M1 ] f y  - -  N1 y, 

b =  L2--M~ l / F - -  N2 y, 
(24) 
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where 

L,- -= Ki]/a-!-L' V'b---,V;; L,,. =-. K~ I/a-!-L' l / b - -  N~ ; 

After separation of the vaNables and integration, the solution of (24) takes the general  form 

1 
- - -  l ~  ( L  - -  M V ~  - , , v u ~ - -  

N 

M M - t -  I / 4 L N - P M  2 -l- 2N ] / - y  _ [ _i_ c o n s t .  In - -  , 
N I / f f - L N - F ~  M - -  1/-~iLN +342 -:-- 2,u V y  

(25) 

(26) 

For values of the coefficients of (24) and (25) with subscript 1, (26) gives a function for y that increases with t ime,  
and for subscript 2 a decreasing one. "Joining" of the solutions to obtain y as a continuous function of t is done in the 

same way as before.  

From (16) and the relat ion 

== Gg Ya/Ga Y gLo , 

it  is not diff icult  to obtain the excess pressure in the furnace (over that in the flue) and c~: 

(pg- ~) ~2/k~ - (~a - . ~  
P f - -  P f l =  a~ 2 - -  1 

where 

(27) 

1 t~a Fa ~/F-~ 
k -  Lo ~g Fg --Y-a" 

For fixed burner geometry (k = const) and given pressure conditions (pf  = const, Pa = const, PfZ = const, (27)de-  
scribes a curve in the plane of parameters (pf - Pf l  ) along which these parameters  vary. This curve may intersect cer -  
tain curves of ignit ion and quenching. Let the points of intersection correspond to the values y '  and y" .  I f  these values 
l ie  in the interval  )'1 -Y~, then segments of the exponentials described by (26) must l ie  in the interval  y" - y ' ,  or, which 
is the same thing, the exponentials wil l  intersect at points corresponding to y = y '  and y = y" .  As before,  each cyc le  con-  
sists of two stages (Fig. 3). We can at once write the expression for the period of osci l lat ion:  

1 
T~ ~\-~l In 

�9 -7 [ , M1 

\" L1 - -  M1 |/-~J"-- }~;I t]" ] A;] I /  4L1N1 -F M~ "~ 

(M,+V ' ~ ' , "  - ~  4L,N1 v-ML_-.!s2N, I/!r ) 
lu M - - I _ _ I / ~ ~  - F 2 N x V ~  ] >( 

,.(M1 ' Y 
-', MI__I / 

1 /' L,_, - -M~. 

, i 7 - -1  4L,A:, 4- M'f -=2,\, l / ! ]  

4L1,,Vl + Mf -', 2,VI ~ '  - + 

V'Y'--' - -  A" 2 y " \ Mo_ 

V-g-:~'~V ) + ' No V 4L2A;2 + M 2 
X 

• L~ ~,, ' V4L~,u + M ~ + ~ ; : ~ , ,  •  _ . ... " 

The osci l la tory process is as follows. At some smal l  value of the pressure in the furnace, due to the large differ-  
ence between the gas and air pressures, on the one hand, and the furnace pressure, on the other, gas and air enter the 
furnace in sufficient quantity and in the required ratio for burning. Since the flow rate out of the furnace is smal l  (the 

difference in pressure between furnace and flue is small) ,  and the hea t  supply is greater than the hea t  loss, the pressure 

1'7,0 



in the furnace increases. The increase continues until the flame is quenched at some pressure p~ in the furnace, owing 
either to reduction of the gas supply or to a change in c~ making burning impossible. Then a sharp fall in temperature 
occurs in the furnace, and a transition to new curves of heat supply and removal giving increased heat supply, which 
leads to a drop in furnace pressure. At some small value of the pressure p 'f  ignition occurs due to the change in gas flow 
rate and c~, and the process repeats i tself .  

The conditions for which self-oscillation are impossible, as in the previous case, are determined from Tosc = ~o 
According to (28), this means 

L1 - -  M1 g r ~  ~ N l y "  = O; L 2 - -  M~ f - ~  - -  N~y' = O. 

The first condition is none other than an approximate form of the exact heat balance equation for combustion [cf. 
(26) and (23)]: 

j '  + L' b - y " -  M1 < F -  N; = 0, 

which is possible only when y~ = Yl, i . e . ,  when p"f = PfF An analogous analysis of the second condition gives p ' f  = pf~. 

Therefore, self-oscillation is impossible when 

- 

As in the previous case, these conditions mean that at least part of the range of furnace operating conditions should 
lie within the bistable zone, which can be ensured by an appropriate choice of design and operating parameters. 

NOTATION 

G-mass  flow rate; Q-vo l um e  flow rate; y -spec i f ic  weight; z - v o l u m e  injection coefficient; Apf, Ap~-d imen-  
sionless pressure head created by injector and operating in nozzle (from the static characteristic), respectively; Ap*f-  
dimensionless underpressure in furnace; R, S', T-known coefficients, functions of injector geometry, hydraulic resis- 
tance along injector channel, and the parameter g = p J p g ;  D - a  coefficient, a function of the injector geometry and 

the hydraulic resistance of the nozzle (it depends appreciably on the burning conditions); p -demi ty ;  T- tempera ture ;  
p-pressure; w-ve loc i ty ;  Cp-specific heat at constant pressure; Cv-specific heat at constant volume; G ' - m a s s  change; 
V-vo lume;  R-gas constant; a - f u e l - a i r  ratio; g-coefficient  of completeness of combustion; k - h e a t  transfer coeffi- 

t P 3 cien ; Ql - Iower  heat of combustion of gas; L0-volume of air required for complete combustion of 1 m of gas at NTP; 
g -mass  flow rate coefficient; S -hea t  transfer surface; F--flow section area; Q, q~, and q~-amount of heat in one fur- 
nace charge, introduced by gas and air and removed from furnace by heated combustion products and by heat removal, 
respectively; Pf l -abso lu t e  pressure in flue downstream of damper, Subscripts: g -gas ;  a - a i r ;  f l - f l u e ;  f - fu rnace ;  
j - j e t :  th- throat ;  d-diffuser; m-mixture;  0-under initial conditions. 
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